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SUMMARY

The objective of biofortif ication is the human 
consumption of high nutritional quality food, rich 
in micronutrients. Selenium (Se) is an essential 
micronutrient in human nutrition, and its essentiality has 
not been evidenced in plants. However, its application 
in crops and subsequent consumption can mitigate the 
def iciency of this micronutrient in the diet of human 
populations. This work analyzes the capacity of sodium 
selenite (Na2SeO3) to increase yield, biosynthesis 
of bioactive compounds and their accumulation in 
tomato fruits. For this, f ive treatments were applied via 
nutrient solution: 0, 2, 4, 6, and 8 mg L-1. At harvest, 
the nutraceutical quality and the accumulation of Se in 
fruits were quantif ied, as well as the productivity of 
tomato plant. Biofortif ication was positively affected 
by the biosynthesis of phytochemical compounds and 
their concentration in fruit, although tomato yield 
decreased. The incorporation of Se in nutritive solution 
is an alternative to increase both the biosynthesis of 

phytochemical compounds and the concentration of 
this element in tomato fruits with the possibility of 
improving public health through its consumption.

Index words: nutraceutical quality, productivity, 
Solanum Lycopersicon.

RESUMEN

El consumo de alimentos de alta calidad nutricional, 
ricos en micronutrientes para el ser humano es el 
objetivo de la biofortif icación. El selenio (Se), es un 
micronutriente esencial en la nutrición humana, y en 
las plantas no se ha demostrado su esencialidad. Sin 
embargo, su aplicación en los cultivos y posterior 
consumo puede mitigar la def iciencia de este 
micronutrimento en la dieta de la población. El presente 
trabajo analiza la capacidad del selenito de sodio 
(Na2SeO3) para aumentar el rendimiento, biosíntesis de 
compuestos bioactivos y su acumulación en frutos de 
tomate. Para ello cinco tratamientos fueron aplicados vía 
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solución nutritiva: 0, 2, 4, 6 y 8 mg L-1. En la cosecha, se 
cuantif icó la calidad nutracéutica y la acumulación de 
Se en frutos, así como la productividad de la planta de 
tomate. La biofortif icación se modif icó positivamente 
con la biosíntesis de compuestos f itoquímicos y su 
concentración en fruto, pero disminuye el rendimiento 
de tomate. La incorporación de Se en la solución 
nutritiva es una alternativa para incrementar la 
biosíntesis de compuestos f itoquímicos e incrementar 
la concentración de este elemento en los frutos del 
tomate con la posibilidad de mejorar la salud pública 
con su consumo.

Palabras clave: calidad nutracéutica, productividad, 
Solanum lycopersicon.

INTRODUCTION

Selenium (Se) is an essential trace mineral for 
humans (Schomburg, 2020; Rath, Lam, and Schooling, 
2021), however, there is often insuff icient intake causing 
serious health problems because Se is essential to form 
proteins (Sec) and vital enzymes such as glutathione 
peroxidase, thyroxine 5-deiodase and selenoproteins 
(Willers, Heinemann, Bitterlich, and Hahn, 2015). Also, 
it shows antioxidant properties towards free radicals, 
mitigates carcinogenic factors and presents biological 
effects towards some coronavirus diseases (including 
COVID-19) (Jha y Warkentin, 2020; Liu et al., 2021). 
The most common way in which humans get Se is 
through the consumption of foods such as meat or f ish 
(Willers et al., 2015) since plants have a low content of 
this trace element (Kleine-Kalmer, Profeta, Daum, and 
Enneking, 2021) as effect of low Se concentrations in 
soil (White, 2018).

One strategy to increase Se content in food is through 
biofortif ication consisting potentiate the bioactivity 
and Se content in the edible parts of plants (Gaucin-
Delgado et al., 2020). Fertilization is the most practical 
way to introduce Se into the food supply chain through 
agronomic practices; biofortif ication has been done 
successfully in different cultures increasing food and 
nutrition security of individuals, families and general 
population (Schiavon and Pilon, 2017), following 
improved agronomic characteristics, increasing food 
production and content of phytochemicals (Hossain 
et al., 2021), which help address nutritional def iciencies 
that are present in human diet (Bocchini et al., 2018); 
allowing faster to reach poorest communities, which 

have no resources to buy nutritional supplements 
suitable for the recommended daily intake (Mikula 
et al., 2020).

On the other hand, tomato (Solanum 
lycopersicum L.) is the most produced and consumed 
horticultural crop worldwide, it is an important 
source of bioactives, including carotenes, phenolic 
compounds, vitamins and minerals (Katırcı et al., 
2020). These compounds are important for human 
health since they are part of our diet, helping in 
phytochemicals interaction with metabolic pathways 
that are related to the inflammatory response and 
oxidative stress (Rodríguez-Concepción et al., 2018), 
therefore, studies related to increase in productivity 
and phytochemicals through biofortif ication is of 
global interest (Błaszczak, Jeż, and Szwengiel, 2020; 
Fitzpatrick and Chapman, 2020). For the above, the 
objective of this work was to evaluate the effect of 
biofortif ication with selenium to improve the bioactive 
compounds and antioxidant capacity in tomato fruits.

MATERIALS AND METHODS

Plant Material and Growing Conditions

The study was carried out in a circular greenhouse 
located at the Technological Institute of Torreón, 
Mexico at 24° 30’ north latitude, 102° 00’ west 
longitude and an altitude of 1120 meters. Tomato 
seedlings cv. Sahel (Syngenta®) with six true leaves 
were transplanted in black polyethylene plastic pots 
with 15 kg capacity that contain as substrate river sand 
and perlite (vol/vol, 80:20) previously sterilized with 
5% sodium hypochlorite.

Inside the greenhouse, the pots were cast in a 
double row and staggered arrangement, where a density 
of four plants per m2 was obtained. A drip irrigation 
system was used to provide three irrigations per day, 
and each plant received 0.6 L in each irrigation, from 
transplanting to beginning of flowering and 2.5 to 
3.5 L from flowering to harvest. Plants were guided 
to a single stem and to sustain them, were sheltered 
with adhering raff ia top of the greenhouse structure. 
Pollination was performed with an electric brush 
daily, from the beginning of flowering until the fruit 
set. The minimum and maximum temperature within 
the greenhouse fluctuated between 17.7 and 31.6 °C, 
respectively, while the minimum and maximum relative 
humidity ranged from 30 to 70 percent.
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Treatments and Experimental Design

A completely randomized experimental design was 
used, applying f ive doses: (0, 2, 4, 6 and 8 mg L-1) of 
Na2SeO3 (Sigma Aldrich). The treatments with Se were 
applied every 15 days with a total of seven applications 
through the nutrient solution (Steiner, 1984). The pH 
and electrical conductivity were maintained at 5.5 and 
2.0 dS m-1 respectively. Yield, fruit quality, nutraceutical 
quality of the fruit and selenium accumulation were 
determined. Ten plants were used per treatment.

Yield

For yield quantif ication fruits of each treatment 
and repetition of the f irst to the f ifth cluster were 
collected, when the fruit presented an intense red color.

Fruit Quality

The fruit quality was evaluated in three fruits 
taken at random from each cluster corresponding to 
each repetition of each treatment. Firmness and weight 
loss of the fruit, total soluble solids, titratable acidity 
and maturity index were quantif ied.

The fruit f irmness was determined with a 
penetrometer (Fruit Hardness Tester FHT200), with 
a strut of 8 mm diameter, readings were taken on the 
opposite sides of the fruit and an average was obtained, 
the results were expressed in Newton units (N). For 
fruit weight loss, a sample of 10 fruits from the last 
bunch was taken and the weight was determined seven 
days after the harvest with a scale (Bapred-3 brand 
Rhino). The difference was calculated with respect 
to the initial weight, recording the data in percentage, 
according to the following equation:

WL (%) = (IW - FW) / IW. Where: WL = weight 
loss; IW = initial weight; FW = final weight.

Total soluble solids (TSS) were evaluated in three 
fruits taken at random from each cluster corresponding 
to each repetition, measuring °Brix, for this a drop of 
fruit juice was obtained and the reading was determined 
with a manual refractometer from 0 to 32% (Master 
2311, Atago®, Tokyo, Japan). In these same fruits 
titratable acidity (TA) was determined according to 
methodology proposed by the AOAC (Helrich, 1990). 
The acidity of 20 g of pulp was evaluated with a sodium 
hydroxide solution at a concentration of 0.1 N, in which 
1% phenolphthalein was used as indicator. Results 

are expressed in % of citric acid (predominant acid 
in tomato pulp). Maturity index was calculated with 
the relationship between total soluble solids/titratable 
acidity (TSS/TA).

Obtaining Extracts

Two grams of fresh sample were mixed in 10 mL of 
80% ethanol in test tubes with screw cap, which were 
placed on an orbital shaker (AAH3D1265U, OS-3000 
Shaker) in the dark for 24 h at 20 rpm at temperature 
environment. The supernatant was extracted for 
analytical tests (Preciado-Rangel et al., 2019).

Nutraceutical Quality of Fruit

Total phenolic content was determined by a 
modif ication of the Folin-Ciocalteau method (Souza 
et al., 2014). 50 µL of ethanolic extract were taken, 
they were diluted in 3 mL of mQ water, 250 µL of 
Folin-Ciocalteau (1N) were added, it was stirred and 
allowed to react for 3 min. Subsequently, 750 µL of 
Na2CO3 (20%) and 950 µL of mQ water were added. 
The solution was allowed to stand for 2 h and samples 
were measured on a UV-Vis spectrophotometer 
(CGOLDENWALL, wavelength range 340-1000 nm 
and a spectral bandwidth: 5 to 760 nm). The standard 
solution was prepared with gallic acid. The results 
were expressed in mg GAE/100 g-1 fresh weight.

Total flavonoids were determined by 
spectrophotometry (Salas-Pérez et al., 2018). 250 µL 
of ethanolic extract were taken and it was mixed with 
1.25 mL of mQ water and 75 µL of NaNO2 (5%), it was 
left for 5 min and 150 µL of AlCl3 (10%) were added. 
Subsequently, 500 µL of NaOH (1 M) and 275 µL of 
mQ water were added. It was shaken vigorously and the 
samples were quantif ied in a UV-Vis spectrophotometer 
(CGOLDENWALL, wavelength range 340 -1000 nm 
and spectral bandwidth: 5 at 510 nm). The standard 
was prepared with quercetin dissolved in absolute 
ethanol (y = 0.0122x-0.0067; r2 = 0.965). The results 
were expressed in mg QE/100 g-1 fresh weight.

Total antioxidant capacity was measured by the 
method DPPH+ in vitro (Brand-Williams, Cuvelier, and 
Berset, 1995). A solution of DPPH+ (Aldrich) in ethanol 
was prepared, at a concentration of 0.025 mg mL-1. 50 µL 
of the ethanolic extract were mixed with 1950 µL of 
DPPH+ solution, after 30 min samples were quantif ied 
in a UV-Vis spectrophotometer (CGOLDENWALL, 
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wavelength range at 340-1000 nm and a spectral 
bandwidth: 5 to 517 nm). Results were expressed in µM 
equivalent in Trolox/100 g-1 fresh weight.

Lycopene extraction was performed by the 
method reported by Gómez-Romero, Arráez, Segura, 
and Fernández (2007), with some modif ications. 
Approximately 1 g of sample was placed in test tubes 
covered with 50 ml of aluminum PTFE. A lycopene 
extraction solution (39 mL) consisting of hexane, 
butylated hydroxytoluene (BHT, 0.05%, w/v) in acetone 
and 95% ethanol in a ratio of 1: 1: 1 was added to the 
tubes and stirred for 10 minutes at 180 rpm. Six ml of 
cold distilled water was added to each tube and stirred 
for an additional f ive minutes for better separation of 
polar and apolar compounds. Then, the tubes were 
removed from shaking and left for 15 minutes at room 
temperature to separate into polar and apolar layers. 
The supernatant was placed in new tubes covered with 
aluminum of 15 mL and kept at -80 °C. The absorbance 
of the supernatant (hexane layer) containing lycopene 
was read three times using a UV-Vis spectrophotometer 
(CGOLDENWALL, wavelength range 340-1000 nm 
and spectral bandwidth: 5 to 503 nm). Absolute hexane 
was used as a blank. The amounts of lycopene in the 
tissues were calculated using the following formula: 
Lycopene (mg/kg) = (x/y) × A503 × 3.12, where: 
x = amount of hexane (mL); y = sample weight; A = 
absorbance at 503 nm and 3.12 = extinction coeff icient.

Selenium Accumulation in Fruits

Dried tomato samples were grind in a porcelain 
mortar and digested with nitric and perchloric acid 

(3:1), using a hot plate at 100 °C. The solution was 
f iltered and boiled to obtain 100 ml of working 
solution with deionized water. Selenium concentration 
in tomato fruits was determined by atomic absorption 
spectrophotometry (Helrich, 1990) the results were 
expressed in µg kg-1 of dry weight of fruits.

Statistic Analysis

The normality and homogeneity of variances of 
the data obtained were verif ied using the Kolmogorov-
Smirnov and Bartlett tests, respectively. Subsequently, 
analysis of variance of simple classif ication and 
multiple comparison of means was performed using 
the Tukey test at a probability of 5% (P ≤ 0.05), with 
the help of the statistical analysis package SAS v 9.0 
(SAS Institute, 2004).

RESULTS AND DISCUSSION

Yield

The addition of 8 mg L-1 of Se decreased 12.5% 
the yield with respect to the treatment without the 
trace element (Table 1), on the other hand, it has been 
reported that high doses of Se decrease crop yield, 
because it acts as a lipid pro-oxidant and increases the 
production of free radicals causing oxidative stress 
(Zięba et al., 2020); however, at low doses, yield is 
improved (Zahedi, Hosseini, Meybodi, and da Silva, 
2019; Rady, Belal, Gadallah, and Semida, 2020) and 
acts as an antioxidant by increasing the ability of plants 
to resist oxidative stress caused by reactive oxygen 

Sodium selenite Yield Fruit firmness Weightloss TSS TA MI

mg L-1 kg plant-1 N % °Brix %

0 2.8a† 2.2b 12.3b 6.2b 0.59b 10.5a

2 2.9a 3.0a 10.4b 7.1a 0.69ab 10.2a

4 3.0a 3.1a 11.2a 7.2a 0.69ab 10.2a

6 2.5b 3.2a 8.4c 7.2a 0.75a 9.6b

8 2.5b 3.3a 7.5c 7.3a 0.77a 9.4b

† Different letters within each column show a statistically significant difference (Tukey P ≤ 0.05). 

Table 1. Effect of doses of Se on fruit yield, fruit firmness, weight loss, total soluble solids (TSS), titratable acidity (TA) and maturity 
index (MI) of tomato.
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species under conditions stress (Hasanuzzaman 
et al., 2020). Plant response to Se depends on its 
concentration; since at low doses yield is promoted 
and moderate doses improve the quality characteristics 
of fruit (Gaucin-Delgado et al., 2020); while high 
concentrations can cause toxicity and cell death (Gupta 
and Gupta, 2017).

Fruit Quality

Results of this study indicated that the addition of 
8 mg L-1 of Se increased the shelf life and improved fruits 
taste, by reducing weight loss and increasing f irmness, 
TSS and TA (61, 8, 17 and 30%, respectively) (Table 1). 
The above may be because Se increase peroxidase 
enzymes (Hibaturrahman et al., 2020), which 
participate in various functions such as lignif ication, 
suberization and crosslinking of structural proteins of 
the cell wall (Pérez-Galende, 2016), thus conferring a 
greater lignif ication of the pericarp cell walls in the 
fruits. In addition, Se decreases the biosynthesis of 
ethylene (Unsihuay, Picasso, and Sun Kou, 2016) and 
thus the inhibition of the action of depolymerizing 
enzymes responsible for the degradation of the cell wall 
(Cerda-Mejía, 2016), such as cellulase (CEL), pectin-
methyl esterase (PME) and polygalacturonase (PG), 
which increases shelf life and reduces fruit weight loss.

Regarding the increase, the TSS in the fruits 
treated with high doses of Se, it is probably due to Se 
promote the accumulation of starch (Aly and Halim, 
2020) and this, in turn, has a preponderant effect on 
the accumulation of solids soluble in fruits (Ziv, Zhao, 
Gao, and Xia, 2018). Similar results were reported by 
Quiterio-Gutiérrez et al. (2019), to indicate an increase 
in TSS in tomato by using Se in nutrient solution. The 
Se increased the TA in fruits, this result coincides with 
Palencia, Martinez, Burducea, Oliveira, and Giralde 
(2016). The citric acid expressed in titratable acidity, 
is produced from the oxidation of sugars during 
respiration and metabolic activity (García-Sahagún, 
Martínez, Avendaño, Padilla, and Izquierdo, 2009; 
Beckles, 2012). The addition of Se to the nutrient 
solution influences the activation of respiration and 
production of ethylene (Hossain et al., 2021; Naseem 
et al., 2021) since it controls the synthesis of citric 
acid, activating phosphorylation as part of respiration 
and the synthesis of ethylene dependent on the 
energy available to generate organic acids (Larskaya, 

Barisheva, Zabotin, and Gorshkova, 2015); decreasing 
the ripening processes as the fruit cycle progresses 
(Garduño and Márquez, 2018). Tomatoes are 
climacteric fruits and their ripening is accompanied 
by changes in flavor, texture, color and aroma. During 
this process, chlorophyll is degraded and carotenoids 
are synthesized, such as lycopene (Fraser, Truesdale, 
Bird, Schuch, and Bramley, 1994) and the fruit loses 
f irmness due to physical and chemical changes 
associated with the degradation of the cell wall and the 
solubilization of pectins by enzymes pectinesterase 
(PE), polygalacturonase (PG) and pectatoliase (PL) 
(San Martín-Hernández, Ordaz, Sánchez, Colinas, 
and Borges, 2012). The results of this study indicate 
that the use of Se delayed fruit maturity by increasing 
f irmness, total soluble solids and titratable acidity, at 
the same time fruit weight loss was decreased. Klee 
and Giovannoni (2011) indicate that a fruit is ripe when 
the IM is greater than 10; The previous results allow us 
to aff irm that the use of Se is a good strategy to delay 
fruit maturity and increase the useful life of tomato.

Phytochemical Compounds

The addition of Se in the nutrient solution, 
positively modif ies the biosynthesis of phytochemical 
compounds (phenolic, flavonoid, antioxidant activity 
and lycopene content (Figure 1a-1d), obtaining the 
highest values of these metabolites with 8 mg L-1, 
surpassing control treatment in 26, 5, 28 and 36%, 
respectively. Dima et al. (2020), mention that Se in 
adequate concentrations improves the biosynthesis and 
accumulation of bioactive compounds. Production of 
foods rich in phytochemical compounds is desirable 
in the food industry, since these compounds delay the 
oxidation and degradation of lipids that increase the 
nutritional quality of foods (Morales-Espinoza et al., 
2019) and its consumption is benef icial for human 
health (Gupta and Gupta, 2017), for its anticancer, 
anti-inflammatory and antimicrobial properties (Dinh 
et al., 2019), in addition, tend to combat cardiovascular 
diseases (Khurana, Tekula, Saif i, Venkatesh, and 
Godugu, 2019). Furthermore, Se is an essential 
component of selenoenzymes, some of which have 
antioxidant functions, improving the nutraceutical 
quality of the edible part of fruit (Gouveia et al., 2020) 
and reducing the production of ROS, such as O2 and 
H2O2 (Rizwan et al., 2020).
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Lycopene is a carotenoid high antioxidant power 
responsible for the characteristic red color of the fruit 
of tomato, lycopene and Se biofortif ication are acting 
together as a major antioxidant in the human body to 
play a key role in several physiological processes in a 
regular diet substantially reducing the risk of disease 
by eliminating toxins that affect the quality of DNA 
(Manjer, Sandsveden, and Borgquist, 2020) and 
cells, as well as being an important visual feature for 
consumers. In this research, the lycopene content was 
modif ied by the Se added in the SN, increasing with 
the doses of Se. The Se acts directly on the functions 
of proteins with selenomethiomine and selenocysteine: 

triggering the increase in antioxidant protection by 
GPXs, energy metabolism and reductive regulation 
of transcriptional factors, acting as an important 
intermediary in increase of ethylene biosynthesis, 
which is crucial to control the maturity stage of fruit 
(Natasha et al., 2018). The addition of Se interacts 
with tomato methionine which becomes Se-Met and 
accumulates as organic Se by phosphate transporters 
in plant tissues, high doses can alter levels of available 
methionine, an important amino acid of the ethylene 
biosynthesis, and f inally alter negatively ethylene 
production (Rocha, Barbosa, Nascimento, Aquino, and 
Oliveira, 2019).

Figure 1. Effect of doses of sodium selenite on content of phenolic content (a), total flavonoids (b), 
antioxidant capacity (c), and lycopene concentration (d) in tomato fruits. Data are shown as mean 
± standard deviation (SD) (n = 50). Columns with different letters were significantly different according to 
Tukey’s HSD test (P < 0.05).
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Selenium Content in Fruits

The selenium content in tomato fruits increased 
in direct proportion to its availability in nutrient 
solution (Figure 2). Accumulation of Se in edible parts 
of the plant depends on plant species, the form and 
chemical source of the element that is being applied 
(Yin et al., 2019). Castillo-Godina, Foroughbakhch, 
and Benavides (2013), reports an accumulation of Se 
in tomato fruits similar to that of the present work. 
Absorption, distribution and translocation of Se 
within plants is determined by the translocation of 
the plant, the activity of membrane transporters, the 
form and concentration of Se in the plant (Gupta and 
Gupta, 2017; White, 2018; Zahedi et al., 2019). The 
greater absorption of this element could have been 
due to selenite is better captured by passive diffusion 
without participation of membrane transports as it is 
chemically similar to phosphate (Hossain et al., 2021), 
commonly synthesized as SeMet, methyl-SeCys or 
ɣ-glutamyl-Se-SeCys (ɣ-Glu-MeSeCys) (Jha and 
Warkentin, 2020), since they are incorporated into 
metabolic pathways such as plant selenoproteins to 
form the most important part of active center of its 
enzymatic activities (Kieliszek, 2019) and a greater 
benef it of  improved antioxidant activity (White, 2018). 
In this regard, the requirement of daily intake of Se 
per day in babies of 6 months’ age is 15 mg, for babies 
from 7 months to 3 years of age is 20 mg, children 
from 4 to 8 years is 30 mg, children from 9 to 13 years 
of age is 40 mg, adolescents from 14 to 18 years 55 mg 

and adults from 19 to 71 years of age 55 mg (Liu et al., 
2019). It can be determined that for groups of 6 months 
to 13 years is excellent source of Se, while 14 to over 71 
years is only good source of Se. The accumulation of Se 
in fruits could complement daily intake recommended 
by the USDA in an easy and simple way (Rady et al., 
2020).

CONCLUSIONS

Selenite added to the nutrient solution increased 
biosynthesis of phytochemical compounds in tomato 
fruits. Agronomic biofortif ication with selenite is an 
alternative to obtain functional foods and increase 
accumulation of Se in tomato fruits, with the possibility 
of improving public health with its consumption.
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Figure 2. Effect of doses of sodium selenite on Se concentration in tomato fruits. Data 
are shown as mean ± standard deviation (SD) (n = 50). Columns with different letters 
were significantly different according to Tukey’s HSD test (P < 0.05).
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