Response of Wheat to Potassium Application at Two Sites With Contrasting Soil Properties in the Mexicali Valley, Mexico
DOI:
https://doi.org/10.28940/terralatinoamericana.v43i.2402Keywords:
cereals, extensive crops, cellular extract, protein, Triticum aestivum L.Abstract
The growth, nutritional status, and yield response of wheat (Triticum aestivum L.) to potassium fertilization were evaluated at two agricultural sites with contrasting soil properties in the Mexicali Valley, Baja California, Mexico. The experiments were conducted during the 2018-2019 fall-winter season using a randomized block design with four K₂O application rates (0, 80, 160, and 320 kg ha-1). The normalized dif ference vegetation index (NDVI), NO₃⁻ and K⁺ concentrations in stem cell extract (SCE), grain yield, grain quality traits (1000-grain weight, protein content, and hectoliter weight), and residual soil chemical properties (pH, salinity, and NO₃⁻ and K⁺ concentrations in saturated paste extract) were measured. At the site with high initial salinity (EC > 5 dS m⁻¹), no significant ef fects were observed for any of the evaluated variables. In contrast, at the lower salinity site (EC = 2.5 dS m⁻¹), statistical dif ferences (p < 0.05) were detected in K⁺ concentration in the SCE at 33 and 65 days af ter seeding. Grain yield and quality were not significantly af fected by potassium fertilization. The initial K⁺ concentrations in soil and SCE indicate suf ficient nutrient availability, which likely limited the agronomic response to potassium fertilization. Based on soil K⁺ values, it is concluded that decisions regarding potassium fertilization should be based on saturated paste extract analysis to avoid unnecessary applications in hyposalic calcaric Vertisols and hypersodic calcaric Cambisols.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Terra Latinoamericana
- Publisher
- Mexican Society of Soil Science, C.A.
References
Figueroa-López, P., Félix-Fuentes, J. L., Fuentes-Dávila, G., Valenzuela-Herrera, V., Chávez-Villalba, G., & Mendoza-Lugo, J. A. (2010). CIRNO C2008, nueva variedad de trigo cristalino con alto rendimiento potencial para el estado de Sonora. Revista Mexicana de Ciencias Agrícolas, 1(5), 739-744.
Foulkes, M. J., Molero, G., Griffiths, S., Slafer, G. A., & Reynolds, M. P. (2022). Yield Potential. En M. P. Reynolds & H.-J. Braun (Eds.), Wheat Improvement: Food Security in a Changing Climate (pp. 379-396). Springer International Publishing. https://doi.org/10.1007/978-3-030-90673-3_21
Grijalva-Contreras, R. L., Robles-Contreras, F., Macías-Duarte, R., Santillano-Cázares, J., & Núñez-Ramírez, F. (2016). Nitrógeno en trigo y su efecto en el rendimiento y en la concentración de nitratos y potasio en el extracto celular de tallo (ECT). Acta Universitaria, 26(5), Article 5. https://doi.org/10.15174/au.2016.963
Guo, J., Jia, Y., Chen, H., Zhang, L., Yang, J., Zhang, J., Hu, X., Ye, X., Li, Y., & Zhou, Y. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 9(1), 1248. https://doi.org/10.1038/s41598-018-37838-3
Gurav, P. P., Datta, S. C., Ray, S. K., Choudhari, P. L., & Ahmed, N. (2018). Assessment of potassium release threshold levels of Vertisols (shrink-swell soils) in different agro-ecological regions of India. Applied Clay Science, 165, 155-163. https://doi.org/10.1016/j.clay.2018.08.008
Handbook No. 60: USDA ARS. (s. f.). Recuperado 13 de julio de 2025, de https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/publications/handbook-no-60/
Hussain, R. A., Ahmad, R., Waraich, E. A., & Nawaz, F. (2015). Nutrient Uptake, Water Relations, and Yield Performance lf Different Wheat Cultivars (Triticum aestivum L.) under Salinity Stress. Journal of Plant Nutrition. https://www.tandfonline.com/doi/full/10.1080/01904167.2014.958169
Lotfi, R., Abbasi, A., Kalaji, H. M., Eskandari, I., Sedghieh, V., Khorsandi, H., Sadeghian, N., Yadav, S., & Rastogi, A. (2022). The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: Probed by chlorophyll a fluorescence. Plant Physiology and Biochemistry, 182, 45-54. https://doi.org/10.1016/j.plaphy.2022.04.010
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300. https://doi.org/10.1016/S0168-1923(97)00027-0
Núñez-Ramírez, F., Grijalva-Contreras, R. L., Macías-Duarte, R., Samaniego-Gámez, B. Y., Escobosa-García, I., Grimaldo-Juárez, O., & Suarez-Hernández, Á. M. (2022). Incorporación de paja al suelo, inoculación con zinc a la semilla y fertilización con nitrógeno en trigo cultivado bajo condiciones de suelo salino. REVISTA TERRA LATINOAMERICANA, 40. https://doi.org/10.28940/terra.v40i0.1010
Oosterhuis, D. M., Loka, D. A., Kawakami, E. M., & Pettigrew, W. T. (2014). Chapter Three—The Physiology of Potassium in Crop Production. En D. L. Sparks (Ed.), Advances in Agronomy (Vol. 126, pp. 203-233). Academic Press. https://doi.org/10.1016/B978-0-12-800132-5.00003-1
Pessarakli, M. (1991). Water utilization and soil salinity control in arid‐zone agriculture. Communications in Soil Science and Plant Analysis, 22(17-18), 1787-1796. https://doi.org/10.1080/00103629109368535
Raheb, A., & Heidari, A. (2012). Effects of clay mineralogy and physico-chemical properties on potassium availability under soil aquic conditions. Journal of Soil Science and Plant Nutrition, 12(4), 747-761. https://doi.org/10.4067/S0718-95162012005000029
Rodríguez-González, R. E., Paz Hernández, J. J., Iñiguez Monroy, C. G., Rueda Puente, E. O., Avendaño-Reyes, L., Cruz-Villegas, M., Ail-Catzim, C. E., Stoycheva, M., Koytchev Zlatev, R., Renganathan, P., & García López, A. M. (2014). Estabilidad de rendimiento en trigo en Valle de Mexicali, México. Phyton (Buenos Aires), 83(1), 65-70.
Kumar, D. S. V., Ramesh, K., Jinger, D., & Rajpoot, S. K. (2022). Effect of potassium fertilization on water productivity, irrigation water use efficiency, and grain quality under direct seeded rice-wheat cropping system. Journal of Plant Nutrition, 45(13), 2023-2038. https://doi.org/10.1080/01904167.2022.2046071
Santillano-Cázares, J. (2013). Uso de Sensores Ópticos para la Fertilización de Trigo (Triticum aestivum L.). REVISTA TERRA LATINOAMERICANA, 31(2), Article 2.
Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669. https://doi.org/10.1111/j.1399-3054.2007.01008.x
Shakeri, S., & Abtahi, S. A. (2018). Potassium forms in calcareous soils as affected by clay minerals and soil development in Kohgiluyeh and Boyer-Ahmad Province, Southwest Iran. Journal of Arid Land, 10(2), 217-232. https://doi.org/10.1007/s40333-018-0052-8
Shirazi, M. P., Enjavinezhad, S. M., & Moosavi, A. A. (2024). Chemical fractions of potassium in arid region calcareous soils: The impact of microclimates and physiographic variability. PLOS ONE, 19(11), e0314239. https://doi.org/10.1371/journal.pone.0314239
Verhulst, N., Govaerts, B., Nelissen, V., Sayre, K. D., Crossa, J., Raes, D., & Deckers, J. (2011). The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor. Field Crops Research, 120(1), 58-67. https://doi.org/10.1016/j.fcr.2010.08.012
Zhang, J., Liu, X., Liang, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2019). Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors, 19(5), 1108. https://doi.org/10.3390/s19051108
Zhang, Z., Zhou, N., Xing, Z., Liu, B., Tian, J., Wei, H., Gao, H., & Zhang, H. (2022). Effects of Temperature and Radiation on Yield of Spring Wheat at Different Latitudes. Agriculture, 12(5), 627. ht













